INDIAN SCHOOL MUSCAT MIDDLE SECTION SECOND PERIODIC TEST 2019-20 CLASS 5 - MATHEMATICS (SET-A) - ANSWER KEY

NABET

Q.NO1	$\underline{\text { SECTION A }}$
(a)	The product of $52.7 \times 100=\underline{\mathbf{5 2 7 0}}$
(b)	$4.500 \mathrm{~kg}=\underline{4500 \mathrm{~g}}$
(c)	The decimal for $6000+20+0.07=\underline{\mathbf{6 0 2 0 . 0 7}}$
(d)	$70025 \mathrm{ml}=\underline{\mathbf{7 0 . 0 2 5}}$ litres

Q.NO2	SECTION B
(a) Ans	Arrange in descending order: $58.02 ; 52.789 ; 58.095 ; 52.7$ $58.095>58.02>52.789>52.7$
(b)	6 chocolate boxes weigh 6.48 kg . Find the weight of one chocolate box? Weight of one chocolate box $=6.48 \mathrm{~kg} \div 6$ $\text { = } 1.08$ Weight one chocolate box 1.08 kg
(c)	The height of a tree is 5 m . The monkey has climbed 155 cm . How much more the monkey has to climb to reach the top of the tree? $155 \mathrm{~cm}=1.55 \mathrm{~m}$ The monkey has to climb $=5.00-1.55 \mathrm{~m}$ $=3.45 \mathrm{~m}$ The monkey has to climb 3.45 metres more.
(d)	If $53 \times 13=689$, Find the value of the following: i) $5.3 \times 1.3=6.89$ ii) $0.53 \times 1.3=\mathbf{0 . 6 8 9}$ iii) $5.3 \times 0.13=\mathbf{0 . 6 8 9}$ iv) $0.53 \times 13=6.89$
(e)	The cost of one egg is is ₹ 2.25 . What will a box of 7 eggs cost? Cost of 7 eggs $=₹ 2.25 \times 7$ 15.75 The cost of 7 eggs $=$ ₹ 15.75

Q.NO	SECTION - C
3	A train covers a distance of 459.99 km in 9 hours. How much distance it covers in 3 hours? Distance covered by the train in 1 hour $=459.99 \mathrm{~km} \div 9$ $=51.11 \mathrm{~km}$ Distance covered by the train in $\mathbf{3}$ hours $=51.11 \times 3$ $=153.33 \mathrm{~km} .$ Ans: In 3 hours the distance covered by the train is 153.33 km
4	$\begin{aligned} & \text { Solve: } 20 \mathrm{~kg}-2.78 \mathrm{~kg}+3 \mathrm{~kg} 7 \mathrm{~g} \\ & \mathbf{2 0 . 0 0 0} \mathrm{~kg}-2.780 \mathrm{~kg}+3.007 \mathrm{~kg} \\ & =\mathbf{2 0 . 2 2 7} \mathrm{kg} \end{aligned}$

